AOTrauma Webinar:  Why Do Patients Get Infection?

May 30, 2017 14:00 CET

Main Presenter: Olivier Borens, MD (Switzerland)
Chat Moderator: Stephen Kates, MD (USA)

Surgical site infections after trauma are debilitating and costly. They are feared by the surgeon and the patient alike. The incidence of this complication can be decreased by proper preoperative, intraoperative, and postoperative management.
The goal of this webinar is to present easy-to-use tools and strategies that will lead to a decrease in the incidence of infection.

More information and registration...

Infection

Executive Editor: Chris Colton

Authors: Pol Rommens, Peter Trafton

Humeral shaft 12-B3 ORIF

back to skeleton

Glossary

1 Principles top

enlarge

Bridge plating

Bridge plating uses the plate as an extramedullary splint, fixed to the two main fragments, while the intermediate fracture zone is left untouched. Anatomical reduction of the shaft fragments is not necessary. Furthermore, direct manipulation risks disturbing their blood supply. If the soft tissue attachments are preserved, and the fragments are relatively well aligned, healing is predictable.

Alignment of the main shaft fragments can usually be achieved indirectly utilizing traction and soft tissue tension.

Mechanical stability, provided by the bridging plate, is adequate for indirect healing (callus formation). Occasionally, a larger wedge fragment might be approximated to the main fragments with a lag screw. Lag screws should be avoided when there are multiple fragments


Bridge plate insertion

Bridge plates can be inserted either with an open exposure, or through a minimally invasive (MIO) approach, which leaves soft tissues intact over the fracture site. The latter requires fluoroscopic monitoring. With open bridge plating, it is important to preserve soft-tissue attachments to the fracture fragments. To do this, stable provisional reduction (with external fixation, large distractor, or maintained manual traction), and minimal exposure and manipulation of the fracture zone are important. The bridge plate is applied through an incision just wide enough for the plate.


Reduction

It is important to restore axial alignment and rotation. A little shortening of 1 or 2 cm can be accepted in the humerus, and in complex multifragmentary fractures may improve bone contact.

Exceptionally, a large fragment has been separated from the fracture with a sharp end impaled in the adjacent muscle. This may need to be repositioned directly with protection of soft-tissue attachments.

2 Plate position top

enlarge

Plate location

The humerus has an anterolateral, a posterior, and a medial surface to each of which a plate can be applied. The location of the fracture will determine where the surgeon chooses to apply a plate to the humerus. The position of the plate is selected according to fracture location, and the length of proximal and distal main segments.

The location should allow sufficient plate length on both proximal and distal segments, with a minimum of 4 holes for each.

An anterolateral plate fits well from very proximally to the distal fifth of the humerus.

The posterior surface is difficult to access proximally and is best suited for middle and distal third fractures. Once a location for the plate has been selected, the surgical approach is determined by that location. For proximal fractures, an anterolateral plate location and anterolateral surgical exposure are usual. For distal fractures, a posterior plate location is preferred. This area can be accessed with either a posterolateral, or a posterior, approach. In the central portion of the humerus, the plate can be applied to the anterolateral, lateral, or posterior surfaces, with the approach dependent on the preferred plate location.

The medial surface is generally reserved for complex reconstructive procedures.


enlarge

Anterolateral plating

An anterolateral approach is chosen for proximal and middle third fractures, and allows supine patient positioning.

The lateral approach can also be used, particularly if the most proximal part of the humerus need not be exposed.

Distally, the plate may lie deep to the radial nerve.


enlarge

Posterior plating

A posterior approach will generally be chosen for more distal fractures.

It is important to protect the radial nerve and its accompanying vessels in the spiral groove. Typically, a posterior plate must be placed underneath the radial nerve, to gain proximal bone anchorage.

 

Note

(a) It is possible to extend an anterolateral approach to access the posterior surface of the distal humerus.

(b) It is mandatory to record accurately in the operation record the exact relationship of the radial nerve to the plate - either by a precise drawing, or by recording the plate hole numbers (counted from proximal to distal) where the nerve lies. This will reduce the risk of accidental nerve damage if the plate should ever need to be removed.

3 Reduction top

enlarge

Manual reduction

Reduction should begin with limb realignment. This manipulative reduction takes advantage of soft tissue tension. Traction on the distal humerus restores bone length and tension in the soft tissues, and realigns the axis. Rotation must also be corrected.

Interposed soft tissue may interfere with bone contact. If so, this will need to be cleared by direct exposure, preserving as much soft-tissue attachment as possible.


enlarge

Reduction by external fixator or distractor

Particularly with comminuted fractures, use of an external fixator or distractor can provide alignment and stability for bridge plating without disturbing the soft tissues at the fracture site.

Proximal and distal pins should be inserted outside the planned plate location, through small open wounds to protect nerves and vessels. For this intraoperative purpose, careful positioning of the pins outside the safe zones is acceptable.

Complete reduction may require additional correction of angulation or rotation.

Folded linen bolsters under the fracture often help.


Comminuted fragments

Remember that alignment of comminuted fragments need not be anatomical, and that efforts to manipulate them often injure their blood supply.

Generally, soft tissue attachments will bring these fragments into appropriate positions as the proximal and distal portions of the humerus are brought into correct alignment and fixed.

Occasionally, a lag screw through a plate or major humeral segment can be used to improve fracture fragment approximation.

4 Plate fixation top

enlarge

Choice of implant

As bridge plating spans a long section of the bone, the length of the implant has to be chosen accordingly. Usually a narrow large fragment plate is selected.

If the cortex of the humerus is thin, screw fixation is compromised. Particularly with osteoporosis, it is safer to fill all the screw holes. Multiple screws add torsional stability and decrease the risk of failure. 

An angular stable plate is a good option in osteoporotic bone. Also, with short proximal segments, consideration should be given to angular stable plating with a long blade plate or locking compression plate, with screws in the humeral head.

In the past, the broad plate has been advised to allow staggered screw holes. This is not necessary, but the screws may be inserted divergently to achieve this effect on the far cortex.


enlarge

Contouring the plate

Depending upon the planned plate location, some contouring of the plate may be necessary. This is true distally on the posterior surface, and also centrally on the anterolateral surface.

Sometimes, twisting the plate around the shaft of the humerus provides better fit and allows for a longer plate.

To match the orientation of the anterolateral surface of the distal humerus, the distal end of the plate will need to be twisted internally.

Contouring is aided by first achieving a provisional reduction using the large distractor or an external fixator. A malleable template is helpful for matching contours of proximal and distal segments.


Pitfall: Avoid soft tissue damage

During contouring and application of the bridge plate, the soft tissues attached to the fracture fragments must be preserved. Provisional fracture stabilization and minimal handling of the fracture site are the keys to this.


enlarge

Plate application

Apply the properly contoured plate to the proximal fragment, so that it is correctly aligned with the humeral axis. When the plate fits satisfactorily against the proximal segment, it can be attached provisionally with a single bicortical screw. While the plate is held manually against the bone, the screw is inserted.

Sometimes it is helpful to clamp the plate to the proximal fragment of the humerus with a bone forceps.

Applying the plate to the distal fragment will correct rotation and axial alignment.
In the lateral view the plate must be parallel to the longitudinal axis of the humerus. If alignment is satisfactory, apply a second screw to secure the plate proximally in this correct position.


enlarge

Alignment and fixation of the distal fragment

Once the plate is satisfactorily fixed proximally, the distal fragment is brought into alignment against the plate.

Often the plate can be held manually against the bone, and a first distal screw inserted.

Sometimes it is helpful to clamp the plate to the humerus with a bone forceps as shown. Carefully pass the forceps close against the bone during application in order to avoid injury to adjacent nerves.


enlarge

Another option is the use of the push-pull reduction device, from the LCP set, as shown here.


enlarge

Plate fixation

If the alignment is satisfactory, add a second distal screw, and reconfirm alignment. At this moment, the plate is attached to the humeral shaft with two screws in the proximal, and two in the distal fragment.

If fragment length permits, use four bicortical screws in each main fragment. For both major fragments, place one screw as close as practicable to the fracture, and the second at the end of the plate.

Confirm the reduction, plate position, and screw length under image intensification.

v1.0 2006-09-14